Pseudo-Merohedral Twinning: The Treatment of Overlapped Data

By C.T.Grainger
School of Physics, The University of New South Wales, Kensington 2033, New South Wales, Australia

(Received 10 October 1968)

Abstract

Expressions which enable data to be 'corrected' for twinning are examined. If the volume ratio of the twin individuals is known, structure factors may be calculated and used in the normal way. Particular care must, however, be taken with weighting. For least-squares refinement or for comparing observed and calculated intensities, overlapped data can be used directly in the normal Kennicott procedure which initially requires a knowledge of the volume ratio, but can refine it. Alternatively the data can be modified in such a way that calculations are independent of the volume ratio. All three methods have been successfully applied to overlapped data from Para Red (1-p-nitrobenzeneazo-2-naphthol).

1. Introduction

It is well known (e.g. Buerger, 1960, Chapter 5) that in some types of twinning, reflexions from one individual of the twin may be superimposed or almost superimposed, on reflexions of the other. In some cases all the reflexions are thus superimposed or 'overlapped' (i.e. not resolved), but in others there exist reflexions arising entirely from one or other of the individuals. The latter condition may, for example, be brought about because of systematic absences.

Crystals which are twinned by pseudo-merohedry can belong to either of these groups depending upon the twin obliquity angle; if the obliquity is small enough it is possible that all reflexions are overlapped, but if large all, or most, may be resolved.* The present work was done in connection with Para Red (1-p-nitroben-zeneazo-2-naphthol, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$) which, as described elsewhere (Grainger \& McConnell, 1969a) is pseudomerohedrally twinned, exhibits anisotropic thermal contraction, and in addition has a comparatively small obliquity $\left(0^{\circ} 22^{\prime}\right)$ at room temperature. As a result the reflexions at room temperature are effectively overlapped, while at $-140^{\circ} \mathrm{C}$, when the obliquity has increased (to $0^{\circ} 48^{\prime}$) many reflexions are single. The latter circumstance enabled the twinning to be detected by X-ray means and also enabled the type of twinning, and the intensity symmetry between the two interleaved reciprocal lattices to be determined. The two reciprocal lattices could equally well be related by a mirror plane or by either of two twofold axes (with a corresponding uncertainty in the direct-space symmetry). For the methods below any of these would suffice. A knowledge of the twinning symmetry in reciprocal space is essential for the application of any correction

[^0]methods, and must be arrived at by X-ray, optical, or trial-and-error methods.

If normal structure-solving or refinement procedures are to be followed, it is necessary to derive structure factors 'corrected for twinning' from the overlapped data, and this is treated in part A below. If, however, one merely wishes to carry out a least-squares refinement, or to compare observed and calculated intensities, one can use either the normal method of Kennicott (Kennicott, 1963), which uses overlapped data directly, or a modification of it which has the advantage of being independent of the volume ratio of the two individuals of the twin: these are treated in part B.

All these methods rely upon the premise that if the crystal comprises two individuals A and B in twin relationship, these scatter independently, and the total energy reaching each spot on the film is the arithmetic sum of the contributions at that point due to each of the components separately. Absorption is assumed to be negligible.

One can assign two meanings to the concept of 'correction' of intensities or structure factors in this context. 'Correction' can mean that the contribution to a given spot on the film from the individual B of smaller volume is mathematically removed, so that the set of 'corrected' readings refers only to the larger individual A. Alternatively, 'correction' can mean that one mathematically reorients B, and takes into account the contributions it would have made if correctly oriented, thus obtaining the readings which would have been obtained from an untwinned crystal of the same total volume. The latter connotation was selected and it facilitated the preparation of the data for the different procedures described below, since scale factors were not then sensitive to the volume ratio of the two individuals.

While the methods below are illustrated by reference to the data from Para Red, the principles are readily adaptable to other cases of overlapping.

A. Structure amplitudes from overlapped twin crystal data

2. Expressions for correction of intensity readings

As pointed out elsewhere, in the photographs of twinned Para Red at room temperature, pairs of reflexions of the type $h k l$ and $h,-(6 h+k), l$ (related by the (010) plane) called herein 'related reflexions', consist in general of two unresolved components, and each of these reflexions contains a contribution from the part of the crystal in twin orientation which may be regarded as belonging to the related reflexion.

Consider a pair of related reflexions P and Q. Let their observed readings be P_{o} and Q_{o}, and their required corrected readings P_{c} and Q_{c} respectively, on an arbitrary scale. Let the twinned crystal contain two individuals A and B, A being the larger, the reflexions being correctly indexed for A. Let the twin fraction, i.e. the ratio of the volume of the small component B to the total volume, be $f(\leq 0 \cdot 5)$. The contributions from the two individuals A and B will be proportional to their volumes which are in the ratio $(1-f): f$. Of the total 'intensity' P_{c}, a fraction $(1-f)$, due to A, will be located at the 'proper' reflexion P and the remaining fraction f (due to B) will be superimposed on reflexion Q. The reverse is true for the corrected intensity Q_{c}. We therefore have the following expressions for the reflexions P and Q :

$$
\begin{align*}
& P_{o}=(1-f) P_{c}+f Q_{c} \tag{1}\\
& Q_{o}=f P_{c}+(1-f) Q_{c} \tag{2}
\end{align*}
$$

Solving,

$$
\begin{align*}
& P_{c}=P_{o}+\alpha\left(P_{o}-Q_{o}\right), \tag{3}\\
& Q_{c}=Q_{o}+\alpha\left(Q_{o}-P_{o}\right), \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha=\frac{f}{1-2 f} \tag{5}
\end{equation*}
$$

Thus if the twin fraction f is known for the crystal, one may correct a reading I_{o} by use of the following relation which expresses both (3) and (4):

$$
\begin{equation*}
\text { Corrected intensity reading }=I_{c}=I_{o}+\alpha\left(I_{o}-I_{o}^{\prime}\right) \tag{6}
\end{equation*}
$$

where I_{o}^{\prime} is the observed intensity of the related reflexion. This relation has been employed by Zachariasen \& Plettinger (1965). Since the difference ($I_{o}-I_{o}^{\prime}$) is positive or negative according to whether the reflexion I_{0} is the stronger or weaker of the pair, this correction has the effect of increasing the stronger and decreasing the weaker. In effect, one finds α (strongerweaker) for a related pair, adds it to the stronger and subtracts it from the weaker, the fraction α being a constant for a given crystal. The correction of intensities can be done equally well before or after making Lorentz and polarization corrections, since they are the same for related reflexions. It was found more convenient to do so before making Lp corrections. For a crystal having $f=0.50$ this correction procedure
would fail, as related reflexions would be of equal intensity and α would be infinite.
3. Finding the twin fraction for a crystal of Para Red

In order to apply the correction equation (6), one requires f, the twin fraction. It may be found experimentally by cooling the crystal so that the twin components of each spot are resolved (or split) as much as possible. Their intensities can then be measured separately.

Consider the split components of two related reflexions P and Q (Fig. 1). Components P_{A} and Q_{A} are those belonging to the larger individual A of the twin crystal, while Q_{B} and P_{B} respectively may be regarded as the mirror images of these, belonging to the smaller individual B.

The intensity relationships are

$$
\begin{equation*}
\frac{P_{A}}{Q_{B}}=\frac{Q_{A}}{P_{B}}=\frac{\text { volume of } A}{\text { volume of } B}=\frac{1-f}{f} \tag{7}
\end{equation*}
$$

where P_{A}, etc. represent the intensity readings.
Thus in principle one can obtain two values of f for each pair of related reflexions on a low temperature photograph using (7). This method was used to determine experimentally the twin fraction of the crystal used for collecting the Para Red data at room temperature, so that these data could be corrected for twinning. From a low-temperature $h k 0$ photograph taken with this crystal forty values of the ratio $(1-f) / f$ were obtained, with the following results:

$$
\left.\begin{array}{rl}
(1-f) / f & =2.50 \pm 0.50 \tag{8}\\
f & =0.29 \pm 0.04 \\
\alpha & =0.67 \pm 0.22
\end{array}\right\}
$$

(The errors are the standard deviations.)
It was thus revealed that this crystal contained approximately 29% in twin orientation.

4. The accuracy of corrected intensity readings

The expression for the corrected intensity, equation (6), may be written

$$
\begin{equation*}
I_{c}=(1+\alpha) I_{o}-\alpha I_{o}^{\prime} \tag{9}
\end{equation*}
$$

Fig. 1. Split related reflexions of Para Red as they appear on a Weissenberg festoon. (Diagrammatic only).

The theory of propagation of errors (e.g. Worthing \& Geffner, 1943, p.209) gives for the standard deviation of I_{c},

$$
\begin{equation*}
\sigma_{c}^{2}=\left(\frac{\partial I_{c}}{\partial I_{o}^{-}}\right)^{2} \sigma_{o}^{2}+\left(\frac{\partial I_{c}}{\partial I_{o}^{\prime}}\right)^{2}\left(\sigma_{o}^{\prime}\right)^{2}+\left(\frac{\partial I_{c}}{\partial \alpha}\right)^{2} \sigma_{\alpha}^{2} \tag{10}
\end{equation*}
$$

where $\sigma_{c}, \sigma_{o}, \sigma_{o}^{\prime}$ and σ_{α} are the standard deviations of $I_{c}, I_{o}, I_{o}^{\prime}$ and α respectively. Hence

$$
\begin{equation*}
\sigma_{c}^{2}=(1+\alpha)^{2} \sigma_{o}^{2}+\alpha^{2}\left(\sigma_{o}^{\prime}\right)^{2}+\left(I_{o}-I_{o}^{\prime}\right)^{2} \sigma_{\alpha}^{2} \tag{11}
\end{equation*}
$$

gives the variance of I_{c} in terms of the variances of I_{o}, I_{o}^{\prime} and α.

For Para Red typical values employed were

$$
\begin{aligned}
& \sigma_{o}=0 \cdot 15 I_{o} \text { if } I_{o}>4 I_{\min }, \\
& \sigma_{o}=0 \cdot 15 \times 4 I_{\min } \text { if } I_{o} \leq 4 I_{\min } \\
&\left(\text { and similarly for } \sigma_{o}^{\prime}\right) . \\
& \alpha=0.67 \quad\quad \text { [equation }(8)] \\
& \sigma_{\alpha}=0.22 \quad\text { [equation }(8)] .
\end{aligned}
$$

The values for σ_{o} were somewhat arbitrarily selected, but seemed reasonable in view of the photographic visual comparison technique employed in measuring the intensities.

The corrected intensities (before applying the Lorentz and polarization factors) are then given by (6), and their variances by (11).

5. Corrected 'observed' structure factors and their standard deviations

The 'observed' structure amplitude is given by

$$
\begin{equation*}
\left|F_{o}\right|=S \sqrt{\frac{I_{c}}{\mathrm{Lp}}} \tag{12}
\end{equation*}
$$

where $1 / \mathrm{L}$ p is the Lorentz and polarization correction factor and S a scale factor placing the structure factors on approximately the absolute scale.

The estimated standard deviation (e.s.d.) of $\left|F_{o}\right|$ on conventional error theory is σ_{F} given by

$$
\begin{equation*}
\frac{\sigma_{F}}{\left|F_{o}\right|}=\frac{1}{2} \cdot \frac{\sigma_{c}}{I_{c}} \tag{13}
\end{equation*}
$$

where σ_{c} is the e.s.d. of I_{c}.
For the majority of reflexions, expressions (12) and (13) are quite satisfactory. However, an obvious deficiency is revealed in the few cases where I_{c} is negative, when both equations fail. (Owing to errors in I_{o}, I_{o}^{\prime} and α, I_{c} sometimes turns out to be negative when correcting the weaker of a related pair.) Nor can conventional small-error theory [equation (13)] be expected to apply when σ_{c} is greater than I_{c} or comparable with it, which can occur for the weaker of a related pair if I_{o} and I_{o}^{\prime} are large and, therefore, have large absolute error estimates.

At first, such 'awkward' reflexions were omitted from least-squares calculations. Later they were included, $\left|F_{o}\right|$ and σ_{F} being calculated according to the value of σ_{c} as follows.

Group (i) If $\sigma_{c}<0 \cdot 3 I_{c}$, the conventional equations (12) and (13) were employed.

Group (ii) If $I_{c} \geq \sigma_{c} \geq 0 \cdot 3 I_{c}$,

$$
\begin{align*}
\left|F_{o}\right| & =\frac{1}{2} S[\mathrm{Lp}]^{-1 / 2}\left[\left(I_{c}+\sigma_{c}\right)^{1 / 2}+\left(I_{c}-\sigma_{c}\right)^{1 / 2}\right] \tag{14a}\\
\sigma_{F} & =\frac{1}{2} S[\mathrm{Lp}]^{-1 / 2}\left[\left(I_{c}+\sigma_{c}\right)^{1 / 2}-\left(I_{c}-\sigma_{c}\right)^{1 / 2}\right] \tag{14b}
\end{align*}
$$

Group (iii) If $\sigma_{c}>\left|I_{c}\right|$ and $I_{c}+\sigma_{c}>0$,

$$
\begin{equation*}
\left|F_{o}\right|=\frac{1}{2} S[\mathrm{Lp}]^{-1 / 2}\left(I_{c}+\sigma_{c}\right)^{1 / 2}, \tag{15a}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{F}=\left|F_{o}\right| \tag{15b}
\end{equation*}
$$

This group includes some instances where I_{c} is negative.

$$
\begin{gather*}
\text { Group (iv) If } I_{c}+\sigma_{c} \leq 0 \\
\left|F_{o}\right|=0 \tag{16a}\\
\sigma_{F}=0 \cdot 5 \tag{16b}
\end{gather*}
$$

This group contains only negative values of I_{c}.
The following assumptions were made in arriving at these relations, for the respective groups above:
(i) Small-error theory must apply if σ_{c} is small compared with I_{c}. The selection of the $0 \cdot 3 I_{c}$ limit is explained below.
(ii) If $I_{c}=9 \pm 7$, small error theory would give $V I_{c}=$ $3 \pm 1 \cdot 2$. However, if one assumes (see below) that the true value if I_{c} lies between $9-7$ and $9+7$, then $V I_{c}$ will lie between 1.4 and $4 \cdot 0$, so the answer will be $\gamma I_{c}=\frac{1}{2}(4 \cdot 0+1 \cdot 4) \pm \frac{1}{2}(4 \cdot 0-1 \cdot 4)=2 \cdot 7 \pm 1 \cdot 3$. This is the basis of equations (14).

The assumption that $I_{c} \pm \sigma_{c}$ defines the limits of the 'likely' or 'possible' values of I_{c} is unusual, since for a normal distribution the probability that I_{c} lies within this range is only $0 \cdot 68$. However, if the limits are generalized to $I_{c} \pm n \sigma_{c}$, this gives $n \sigma_{c}$ in place of σ_{c} in both equations (14). One then finds that for small errors ($\sigma_{c} \ll I_{c}$), equation ($14 b$) reduces to (13) only if $n=1$, while (14a) reduces to (12) for any small value of n. Thus, by taking $n=1$ continuity is assured: in fact the conventional equations are preferred for Group (i) reflexions only because of the ease and accuracy of the calculation, not as a matter of principle. When $\sigma_{c}=$ $0 \cdot 3 I_{c}$ both sets of equations give essentially the same result.
(iii) The true value of I_{c} is known to be at least zero, algebraically. Thus, if it is calculated from the data that $I_{c}=-2 \pm 11$ or $I_{c}=2 \pm 7$, this is taken in both cases to mean that I_{c} lies between 0 and 9 , so that $V I_{c}$ is $\frac{1}{2}(/ 9+0)$ and the s.d. of $V I_{c}$ is $\frac{1}{2}(/ 9-0)$, in accordance with equations (15).
(iv) A few cases were encountered where I_{c} was negative, and even $I_{c}+\sigma_{c}$ did not exceed zero. Consider, for example, the case where the 'corrected' intensity is $I_{c}=-3 \pm 1$. This is taken to indicate that $I_{c}=0$ with some certainty, so that $\gamma I_{c}=0$. The value of the s.d. has to be set at some arbitrary figure for the least-squares program, as the above principles can-

Table 1. Structure factor table for Para Red
The column headings FOBS, ESD, FCAL and ANG indicate respectively $\left|F_{o}\right|$, the e.s.d. of $\left|F_{o}\right|,\left|F_{c}\right|$, and the phase angle of F_{c}. T represents the group code number (see text).

$\begin{array}{llll}0 & 11 & 2 & 20.5 \\ 0 & 12 & 2 & 10.5\end{array}$

Table 1 (cont.)
h K labes eso feal ang t

not be extended to cover this case. These considerations led to the use of equations (16).

It was convenient to include all these calculations as well as those correcting the intensity readings, into a single data reduction program written in FORTRAN. Special provision was made for the $0 k l$ and $h,-3 h, l$ reflexions which are not affected by twinning in Para Red, the former because by symmetry they are equal in intensity to the related reflexion (with or without twinning), and the latter because they are self-overlapping, since they lie on the mirror-plane. Their errors were calculated simply by use of $\sigma_{c}=0 \cdot 15 I_{o}$, etc. instead of (11).

6. Results for Para Red

The structure of Para Red is reported in full elsewhere (Grainger \& McConnell, 1969b) but the final structure factor table is given in Table 1. The $\left|F_{o}\right|$ and their e.s.d.'s are listed together with a two-digit code number in the column headed ' T '. The second digit indicates by 1 to 4 which of the above procedures (i) to (iv) was used in computing the $\left|F_{0}\right|$ and the e.s.d. for that reflexion. The first digit indicates by $0,1,2$, or 3 to which of the groups labelled S, W, U or E the reflexion belongs: these contain respectively, reflexions which are stronger (S) than the related reflexion, reflexions which are weaker (W) than the related reflexion, reflexions which are unaffected (U) by twinning, in either of the ways described above, and reflexions which are accidentally equal (E) to the related reflexion (of which there are surprisingly many). Thus ' T ' code numbers
$1,2,3,4$ indicate groups $S(i)$ to $S(i v)$,
$11,12,13,14$ indicate groups $W(i)$ to $W(i v)$,
$21,22,23,24$ indicate groups $U(i)$ to $U(i v)$,
$31,32,33,34$ indicate groups $E(i)$ to $E(i v)$.
(i) Agreement between observed and calculated structure amplitudes
Table 2 lists several quantities pertaining to the various groups mentioned above. In columns 2 and 3 appear the number of reflexions and the mean $\left|F_{0}\right|$: these are guides to the importance of the group.

Table 2. Agreement between 'observed' and calculated structure amplitudes

| Group | Number in group | Mean \|Fo| | R | Reliability $=\frac{\Sigma \sigma_{F}}{\Sigma\left\|F_{0}\right\|}$ |
| :---: | :---: | :---: | :---: | :---: |
| All data | 926 | $5 \cdot 7$ | $0 \cdot 13$ | $0 \cdot 17$ |
| S | 346 | $8 \cdot 2$ | 0.09 | $0 \cdot 10$ |
| W | 341 | $3 \cdot 1$ | $0 \cdot 30$ | $0 \cdot 44$ |
| U | 133 | $8 \cdot 2$ | 0.07 | $0 \cdot 08$ |
| E | 106 | $2 \cdot 5$ | $0 \cdot 18$ | $0 \cdot 26$ |
| (i) | 479 | $8 \cdot 7$ | 0.08 | $0 \cdot 10$ |
| (ii) | 212 | $4 \cdot 0$ | 0.22 | $0 \cdot 29$ |
| (iii) | 218 | $1 \cdot 2$ | $0 \cdot 58$ | $1 \cdot 00$ |
| (iv) | 17 | $0 \cdot 0$ | 1.00* | 0.68* |

Column 4 gives the R value, $\Sigma\left|\left|F_{o}\right|-\left|F_{o}\right|\right| / \Sigma\left|F_{o}\right|$, which is 0.13 for the whole of the data, but lies in the range 0.07 to 0.09 for the S, U and (i) groups. For other groups it ranges as high as $0 \cdot 58$, excluding one small group.
It is interesting to compare these figures with the e.s.d.'s of the 'observed' $\left|F_{0}\right|$ within each group. Were it not for the twinning, the e.s.d. of most reflexions would have been 7.5% of the structure amplitude, since a general 15% error in intensity readings was assumed except for weak readings. A perusal of the values in Table 1 reveals that for some groups the estimated fractional error is frequently much larger than this. A quantitative index of the expected reliability of the $\left|F_{o}\right|$ for each group has been calculated from the e.s.d.'s and $\left|F_{o}\right|$ of Table 1 and this appears in the last column of Table 2. According to this measure the S and U data are expected to be quite reliable ($0 \cdot 10$ and 0.08), the E group rather unreliable (0.26), due partly to a preponderance of weak reflexions, and the W reflexions very unreliable indeed ($0 \cdot 44$). These figures show considerable quantitative agreement with the corresponding R values. It is interesting to note that without the W and E reflexions R is 0.083 , which gives some idea of the intrinsic accuracy of the raw data.

For the groups (i) to (iv), where the grouping is based on the different mathematical methods described in section (5), a similar situation prevails: groups (ii), (iii) and (iv) are expected to be relatively unreliable and this is reflected also in the R values obtained. The reason these reflexions do not greatly inflate the overall R, although comprising over half the total number, is that they are in general rather weak (column 3).

From all this one draws the conclusion that the agreement between the observed and calculated structure amplitudes is good where expected and poor where expected. Because the data contain many reflexions of low accuracy, the overall residual is comparatively high. It does not necessarily follow that this has affected the accuracy of the final parameters, for if the data are correctly weighted this should not happen.

(ii) Weighting analysis

The final results were also analysed to check on the effectiveness of the methods of section (5) in estimating standard deviations for the 'observed' structure amplitudes. The usual means of evaluating the success or otherwise of a weighting scheme is to determine whether the mean $w \Delta^{2}=\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sigma_{F}^{2}$ is the same for all groups of data (Cruickshank, 1961, p.45). It is customary, for normal data, to test groups of data having increasing $\left|F_{o}\right|$ or $(\sin \theta) \mid \lambda$. In the present case there is little point in testing these: the first bears no simple relationship to the original raw readings except for the U and E groups, and in any case it is much more likely that discrepancies will occur between the $\mathrm{S}, \mathrm{W}, \mathrm{U}$ and E groups or groups (i) to (iv). The mean $w \Delta^{2}$ has been calculated for all combinations of these groups, and are shown in Table 3. They range from 0.44 to 2.51 .

The structure amplitudes for the U group do not involve the combination of two raw readings, and are not affected by the twin fraction or its error. Consequently these will tend to reflect any general over- or under-estimate in the assumed standard deviations of the raw readings. That this has not happened is shown by the value for the whole group which is just $1 \cdot 00$. For the S groups the values are not far from unity, and the same is true for the W groups, except for the small group W(iv). The E group is the worst, mainly due to the $E(i i i)$ sub-group.

Examination of the Table to check on the error estimates for groups (i) to (iv) reveals more significant differences. The results for groups (i) and (ii) are very satisfactory. In group (iii) the errors appear to have been slightly over-estimated by equation (15b). The arbitrary error given to the 17 reflexions in group (iv) appears to be too low: the mistake, however, is really in the value of $\left|F_{o}\right|$ which was set at zero, but in every case $\left|F_{c}\right|$ has turned out to be non-zero, the mean being 0.74 and the standard deviation of the sample 0.09 .

In all, the weighting scheme developed for the twinned data is seen to be fairly successful, judged on internal evidence. It should be mentioned that hydrogen atoms were not included when calculating the F_{c}.

It is clear that a conventional weighting scheme which was simply a function of $\left|F_{0}\right|$ would be unlikely to succeed: comparing the mean e.s.d.'s $0 \cdot 9,1 \cdot 4,0 \cdot 7$ and 0.7 , or the mean values of $|\Delta|, 0.7,0.9,0.6$ and $0 \cdot 5$, with the mean $\left|F_{o}\right|$ values of the $\mathrm{S}, \mathrm{W}, \mathrm{U}$ and E groups respectively (Table 2) shows that the larger errors are not in general associated with the larger $\left|F_{o}\right|$ in these data.

B. The direct use of overlapped data in least-squares refinement

7. Introduction

There are two cases in which it is impossible to resolve crystallographically distinct reflexions: that of a twinned single crystal and that of powder diffraction data. Kennicott (1963) has demonstrated that it is still possible to refine such data by the least-squares method. Advantages of this in the case of Para Red are first,
that it is unnecessary to correct the raw intensity data for twinning, and secondly, that it is possible to refine the numerical value of the twin fraction f. Alternatively, it is shown below that the data can be prepared in such a way that a knowledge of the twin fraction is irrelevant.

8. The normal Kennicott method

Kennicott modified the Busing, Martin \& Levy (1962) least-squares program to prove that his method worked in practice, and a version of ORFLS modified similarly was made available to the author by Dr G. Cox of the Australian Atomic Energy Commission Research Establishment, Sutherland, New South Wales. In effect, one informs the computer of the indices of all the planes contributing to an overlapped reflexion, and by means of separate scale factors (two in this case) of the relative amount of each contribution. The calculated F^{2} for each composite reflexion is then compared with that actually observed. Positional and vibrational parameters may be refined in the usual way. Refinement of the twin fraction is done indirectly by refining the scale factors.
The experimental program for doing this is very inefficient in the case of Para Red since all reflexions except $0 k l$ are overlapped. Each overlapped reflexion involves two indices, so that computing time is almost doubled. Where separate observations are included for both of a related pair (which is usual), the computer must actually perform twice the calculations for both indices.

9. The summed-data Kennicott method

It occurred to the author that the Kennicott program could be used in a different way: in this method each 'observation' is obtained by summing the observed intensities of a related pair of reflexions. An immediate advantage of this is that no wasteful computing occurs, each index appearing once only. A second interesting property is that the summed 'intensity' is independent of the twin fraction, since this merely determines the way the 'intensity' is distributed between the two related spots. The twin fraction thus becomes irrelevant, and this is the chief advantage. It may in some cases

Table 3. The mean value of $w \Delta^{2}$ for the data-groups $\mathrm{S}, \mathrm{W}, \mathrm{U}, \mathrm{E},(\mathrm{i})$,(ii),(iii),(iv) and combinations of these The number of reflexions involved is in brackets.

Group	(i)	(ii)	(iii)	(iv)	(i) to (iv)
S	1.18	0.73	0.69	-	1.14
	(317)	(27)	(2)	(0)	(346)
W	0.87	1.08	0.96	2.51	1.09
	(13)	(153)	(158)	(17)	(341)
U	1.01	1.90	0.77	-	1.00
	(117)	(2)	(14)	(0)	(133)
E	0.89	1.04	0.44	-	0.75
	(32)	(30)	(44)	(0)	(106)
S+W + U+E	1.11	1.04	0.84	2.51	1.06
	(479)	(212)	(218)	(17)	(926)

be considered a disadvantage that the method provides no way of refining, or even of determining, the twin fraction. For this reason both methods have their place.

A numerical comparison of the three different procedures employed in preparing Para Red data may serve to clarify the differences. The raw readings for the related pair of reflexions indexed $1 \overline{10} 0$ and 140 were 820 and 450 respectively, on an arbitrary scale. Assuming the twin fraction to be $0 \cdot 29$, the 'corrected' readings are 1070 and $200:\left|F_{o}\right|$ proportional to the square root of these figures could be used in the customary way, as described in part A. Using the normal Kennicott method as in section 8, however, one would use $\left|F_{o}\right|^{2}$ proportional to the original raw readings; while for the summed-data Kennicott method of this section a single value proportional to the sum 1270 of the two raw readings would be employed, in association with either one of the two indices (since the computer is informed of the other index in the manner usual to this program). The fact that the sum is independent of the twin ratio is illustrated by noting that the sum of the corrected readings is also 1270 .

10. Discussion

All three methods were used with the overlapped room-temperature data of Para Red. Further details are given in another paper (Grainger \& McConnell, $1969 b$). It is worth pointing out that the summed-data method has the disadvantage that the number of 'observations' is drastically reduced, which increases the e.s.d.'s of the refined parameters. On the other hand, it can be used without knowing the twin fraction, and this could be useful in the early stages of a structure determination.

An advantage of the normal Kennicott method is that it permits the use of reflexions which possess related reflexions whose intensity is for some reason unknown.

A logical sequence of refinement, once the structure has been solved, is to use first the summed-data method to refine the atomic parameters and a scale factor or factors, secondly to use the normal Kennicott method to refine the twin fraction, and thirdly, knowing the latter, to derive structure amplitudes which are then used for the final stages and for producing Fourier syntheses of the electron density.

This sequence was used for the last 11 cycles of refinement of Para Red. Two cycles using summed data were followed by 5 cycles with the normal Kennicott method during which the twin fraction refined from 0.275 to 0.286 ± 0.005 which agrees closely with the experimental result (section 3). The final four cycles used structure amplitudes corrected for twinning using this new value. It should be noted that Para Red was particularly slow to refine, which was aggravated by
the fact that only 140 of the 198 parameters could be refined in any one cycle by use of the existing program, and that fractional shifts were then necessary to give convergence. For this reason the three methods were not used in strictly parallel refinements to obtain three final results. Nevertheless the parameters resulting from the normal Kennicott refinement can reasonably be compared with the final ones using corrected data. The values of x and y coordinates were found to differ by less than one s.d. except for five cases where the difference was less than two standard deviations. For the z coordinates about half the differences were less than one standard deviation, all except two were less than two s.d.'s and these two were about $2 \frac{1}{2}$ s.d.'s. Considering the fact that the 'observations' are of greater accuracy, it is probable that the coordinates using the conventional Kennicott method are the more accurate of the two sets.

It is possible that the use of corrected structure factors in Fourier summations could produce serious errors owing to the large fractional errors which can occur, as mentioned in section 5 . The use of a Fourier weighting scheme may be necessary, but no investigations along these lines have been made.

The principles outlined in this paper should be applicable to cases involving overlapped data from twins of types other than pseudo-merohedral. However, although it is feasible to deal with overlapped data in the ways described, the use of untwinned crystals is recommended if maximum accuracy is desired.

The author wishes to thank Professor J.F. McConnell for helpful discussions, and for his careful checking of the manuscript.

References

Buerger, M. J. (1960). Crystal Structure Analysis. New York: John Wiley.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A FORTRAN Crystallographic Least-Squares Program. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cruickshank, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Ed. PepinSKy, R. \& others. New York: Pergamon Press.
Grainger, C. T. (1969). Acta Cryst. A25, 435.
Grainger, C. T. \& McConnell, J. F. (1969a). Acta Cryst. A25, 422.
Grainger, C. T. \& McConnell, J. F. (1969b). Acta Cryst. In the press.
Kennicott, P. R. (1963). Report No. 63-RL-(3321G), General Electric Research Laboratory, Schenectady, New York.
Worthing, A. G. \& Geffner, (1943). Treatment of Experimental Data. New York: John Wiley.
Zachariasen, W. H. \& Plettinger, H. A. (1965). Acta Cryst. 18, 710.

[^0]: * The twin obliquity alone does not reliably indicate whether reflexions will be resolved. Other considerations are the strength of the high-angle reflexions (which depends in turn upon the structure, the temperature, and the X-ray wavelength), the spot shape, and the Weissenberg geometry (Grainger, 1969).

